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THE INDIVIDUAL ELEMENT TEST REVISITED

Carmelo Militello and Carlos A. Felippa

Department of Aerospace Engineering Sciences
and Center for Space Structures and Controls
University of Colorado at Boulder

Boulder, Colorado 80309-0429, USA

SUMMARY

The subject of the patch test for finite elements retains several unsettled aspects. In
particular, the issue of one-element versus multielement tests needs clarification. Follow-
ing a brief historical review, we present the individual element test (IET) of Bergan and
Hanssen in an expanded context that encompasses several important classes of new ele-
ments. The relationship of the IET to the multielement forms A, B and C of the patch
test and to the single element test are clarified.

1. BACKGROUND

The patch test for convergence is a fascinating area in the development of nonconform-
ing finite element methods. It grew up of the brilliant intuition of Bruce Irons. Initially
developed in the mid-1960s at Rolls Royce and then at the Swansea group headed by Olek
Zienkiewicz, by the early 1970s the test had became a powerful and practical tool for eval-
uating and checking nonconforming elements. And yet today it remains a controversial
issue: accepted by most finite element developers while ignored by others, welcomed by
element programmers, distrusted by mathematicians. For tracing down the origins of the
test there is no better source than a 1973 survey article by Irons and Razzaque [12]. Added
remarks to the quoted material are inserted in footnotes, and reference numbers have been
altered to match those of the present paper.

Origins of the Patch Test

In 1965 even engmeermg intuition dared not predict the behavior of certain finite elements.
Experience force those englneers who doubted it to admit that interelement contmulty was 1m-
portant: the senior author! believed that it was necessary for convergence. It is not known which
ideas inspired a numerical experiment by Tocher and Kapur [25] which demonstrated conver-
gence within 0. 3% in a blharmomc problem of plate bending, usmg equal rectangular elements
with 1, z, y, 22, zy, ¥?, ¥?, 22, 22y, zy?, %, and z%y and zy3, as functional basis. The nodal
vanable of this Ari Adlm rectangle [1] are w, Bw/8z and Bw/ay at the four corners, and this
element guarantees only C° conformity.

! Bruce Irons



Some months later, research at Rolls-Royce on the Zienkiewicz nonconforming triangle (2],
—- a similar plate-bending element?— clarified the situation. Three elements with C! continuity
were simultaneously available, and, because the shape function subroutine used for numerical
integration had been exhaustively tested, the results were trustworthy. It was observed: (a) that
every problem giving constant curvature over the whole domain was accurately solved by the
conforming elements whatever the mesh pattern, as was expected, and (b) that the nonconforming
element was also successful, but only for one particular mesh pattern.?

Thus the patch test was born. For if the external nodes of any sub-assembly of a successful
assembly of elements are given prescribed values corresponding to an arbitrary state of constant
curvature, then the internal nodes must obediently take their correct values. (An internal node
is defined as one completely surrounded by elements.) Conversely, if two overlapping patches
can reproduce any given state of constant curvature, they should combine into a larger successful
patch, provided that every external node lost is internal to one of the original patches. For such
nodes are in equilibrium at their correct values, and should behave correctly as internal nodes
of the extended patch. In an unsuccessful patch test, the internal nodes take unsuitable values,
which introduce interelement discontinuities. The errors in deflection may be slight, but the
errors in curvature may be £20%. We must recognize two distinct types of errors:

(i) The finite element equations would not be exactly satisfied by the correct values at the
internal nodes — in structural terms, we have disequilibrium,;

(i1} The answers are nonunique because the matrix of coefficients K is semidefinite.
Role of the Patch Test

Clearly the patch test provides a necessary condition for convergence with fine mesh. We
are less confident that it provides a sufficient condition. The argument is that if the mesh is fine,
the patches are also small. Over any patch the correct solution gives almost uniform conditions
to which the patch is known to respond correctly — provided that the small perturbations from
uniform conditions do not cause a disproportionate response in the patch: we hope to prevent
this by insisting that K is positive definite.

The patch test is invaluable to the research worker. Already, it has made respectable

(i) Elements that do not conform,

(ii) Elements that contain singularities,

(iii) Elements that are approximately integrated,
(iv) Elements that have no clear physical basis.

In short, the patch test will help a research worker to exploit and justify his wildest ideas.
It largely restores the freedom enjoyed by the early unsophisticated experimenters.

The late 1960s and early 1970s were a period of unquestionable success for the test. That
optimism is evident in the article quoted above, and prompted Gilbert Strang to develop
a mathematical version popularized in the Strang-Fix textbook [21].

Confidence was shaken in the late 1970s by several developments. Numerical ex-
periments, for example, those of Sander and Beckers [20] suggested that the test is not
necessary for convergence, thus disproving Irons’ belief stated above. Then a counterexam-
ple by Stummel [22] purported to show that the test is not even sufficient.* This motivated

[&]

This element is that identified by ‘BCIZ’ in the present paper

The bending element test referred to in this sentence appears in the Addendum to [2). This Adden-
dum was not part of the original paper presented at the First Wright-Patterson Conference held in
September 1965; it was added to the Proceedings that appeared in 1966. The name “patch test” will
not be found there; see the Appendix of [21] for further historical details.

Stummel has constructed [23] a generalized paich test that is mathematically impeccable in that it
provides necessary and sufficient conditions for convergence. Unfortunately such test lacks important
side benefits of Irons’ patch test, such as element checkout by computer, because it is administered
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defensive responses by Irons [13] shortly before his untimely death, and by Taylor, Simo,
Zienkiewicz and Chan [24]. These papers tried to set out the engineering version of the
test on a more precise basis.

Despite these ruminations many questions persist, as noted in the lucid review article
by Griffiths and Mitchell [11]. Some of them are listed below.

Q1. What is a patch? Is it the ensemble of all possible meshes? Are some meshes
excluded? Can these meshes contain different types of elements?

Q2.  The test was originally developed for harmonic and biharmonic compressible elastic-
ity problems, for which the concept of “constant strains” or “constant curvatures” is
unambiguous. But what is the equivalent concept for shells? Even Reissner-Mindlin
plates (which lead to the so-called C° elements) pose difficulties.

Q3. What are the modifications required for incompressible media? Is the test applicable
to dynamic or nonlinear problems?

Q4.  Are single-element versions of the test equivalent to the conventional, multielement
versions?

Q5. Is the test restricted to nonconforming assumed-displacement elements? Can it
be extended to encompass assumed-stress or assumed-strain mixed and hybrid ele-
ments? (For initial attempts in this direction, see [10])

The following treatment is aimed primarily at answering the last two questions. No
position as to the mathematical relevance of the test is taken.

2. THE INDIVIDUAL ELEMENT TEST

Because of practical difficulties incurred in testing all possible patches there have
been efforts directed toward translating the original test into statements involving a single
element. These will be collectively called one-element tests.

The first step along this path was taken by Strang [21], who using integration by parts
recast the original test in terms of “jump” contour integrals over element interfaces. An
updated account is given by Griffiths and Mitchell [11], who remark that Strang’s test can
be passed in three different ways:

JCS: Jump integrals cancel over common sides of adjacent elements (e.g. DeVeubeke’s
3-midside-node triangle, Morley’s plate elements).

JOS: Jump integrals cancel over opposite element sides (e.g. Wilson’s incompatible plane
rectangle [26]).

JEC: Jump integrals cancel over the element contour (see examples in [11]).

Another important development, not so well publicized as Strang’s, was undertaken
by Bergan and coworkers at Trondheim over the period 1975-1984. The so called individual

as a mathematically limiting process in function spaces. Furthermore, it does not apply to a mixture
of different element types, or to situations such as a side shared by more than two elements.
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element test, or IET, was proposed by Bergan and Hanssen [4] in 1975. The underlying
goal was to establish a test that could be directly carried out on the stiffness equations
of a single element — an obvious improvement over the multielement form. In addition
the test was to be constructive, i.e., used as an @ priori guide during element formulation,
rather than as a post-facto check.

The IET has a simple physical motivation: to demand pairwise cancellation of trac-
tions among adjacent elements that are subjected to a common uniform stress state. This
is precisely the ‘JCS’ case of the Strang test noted above. Because of this inclusion, the
IET is said to be a strong version of the patch test in the following sense: any element
passing the IET also verifies the conventional multielement form of the patch test, but the
converse is not necessarily true.

The IET has formed the basis of the free formulation (FF) later developed by Bergan
and Nygérd [6]. It has also played an important part in the development of high perfor-
mance finite elements undertaken by the authors [7-9,15-18].

In an important paper written in response to Stummel’s counterexample, Taylor,
Simo, Zienkiewicz and Chan [24] defined multielement patch tests in more precise terms,
introducing the so-called A, B and C versions. They also discussed a one-element test called
the “single element test,” herein abbreviated to SET. They used the BCIZ plate bending
element [2] to show that an element may pass the SET but fail multielement versions, and
consequently that tests involving single elements are to be viewed with caution. In what
follow we try to clarify this apparent contradiction and to establish precisely what the
individual element test entails. In particular it is shown that the IET contains a crucial
condition that the SET lacks, and that the two tests are not therefore equivalent.

Furthermore, we extend the IET to conditions beyond those considered by Bergan
and Nygard by including elements with unknown internal displacement fields. The most
important sources of such elements are: stress-assumed hybrids, and elements constructed
through the assumed natural strain (ANS) and assumed natural deviatoric strain (ANDES)
formulations.

3. ASSUMPTIONS FOR ELEMENT CONSTRUCTION

Suppose that we want to test an individual element of volume V and boundary S with
exterior normal n. The element satisfies the following assumptions.

Al.  The element shares displacement degrees of freedom collected in v (the so called
visible degrees of freedom) with adjacent elements. The boundary displacement
field d is uniquely determined by v as

d= NdV, (1)
where Ny are boundary shape functions.
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A2,

A3.

A4.

The term “boundary displacement field” is meant to include normal derivatives (side rotations or
slopes) in bending problems. More generally, in a problem governed by a variational principle of
index m > 1, d includes normal derivatives up to the (m — 1)** order.

This assumption says nothing about the internal displacement field u. In free-formulation elements
u is known and agrees with d only at the nodes. In the ANS [3,14,19,]) and ANDES [8,9,17,18]
formulations, u is unknown because the deviatoric strain field ¢, introduced in A2 below is not
generally integrable.

The strain field € within the element is expressible as
€ = Byv, (2)

which admits the following decomposition into mean and deviatoric parts:

e=é+e,=Bv+Byv=(B+B)v, (3)
where 1
e=7'/;/edV, €, = € — E. (4)
We note that
/ B,dV =0, / AB,dV =0. (5)
1% 1%

in which A is an arbitrary matrix constant over the element.

Subscript h stands for “high order.” The strain field €, is not generally integrable, that is,
associable with an internal displacement field u such that ¢, = Du, where D = %(V + VT) is the
symmetric vector gradient operator. On the other hand, the mean strain field &, being constant,
is integrable, as discussed under assumption A4.

Suppose the element is under a constant stress state 5. Then a nodal force system
Py conjugate to v in the sense of virtual work develops. These forces are connected
to v through the relation

po = Loy, L= / Ny, dS, (6)
S

where L is called the force lumping matriz and Ny, denotes the projection of the
shape functions Ny over the normal to the element side.

Matrix L was introduced by Bergan and coworkers in their studies leading to the free formulation
(5,6], and plays a crucial role in the individual element test.

The constant stress field o is associated with a given displacement field called u,.,
such that the associated strain and stress fields are

€' = D(u,.), o’ = Ee¥, (7)

where E is the symmetric matrix of elastic moduli, assumed constant over the ele-
ment. This constitutive assumption excludes incompressibility, which must receive
special treatment.



Field u,. cannot be immediately linked to v because it spans a subspace of the
possible boundary motions. We must start by expressing u,. in the modal or
generalized-coordinate form

Upe = Nchrc’ (8)

where N7, are modal functions and q,., their amplitudes. The projection v, of u,.
over the space of boundary motions spanned by v can be most easily obtained by
collocation, that is, evaluating u,. at the nodal points. This process yields

Vre = GreQpe, (9)
in which G, will generally be a rectangular matrix with more rows than columns.

Subscripts r and ¢ mean that u,. is supposed to include rigid-body and constant-strain modes.
In mathematical terms, ur¢ is a polynomial of degree m — 1 when the variational index is m.

4. THE STIFFNESS MATRIX

Under the previous assumptions, the stiffness matrix is given by
K = / BTEBJV. (10)
1%
Using the strain decomposition (3), K splits as follows:

K=Kb+Kh=/

ETE'ﬁdV+/ B{EB,,dV:VB‘TE"B"+/ BTEB,dV  (11)
v 14 %4

because of the energy orthogonality condition
=T
/ B EB,dV =0, (12)
v

. =T . .
which results on taking A = B" E on the second of (5). Matrices K; and K receive the
name of basic stiffness and higher order stiffness, respectively.

5. FIRST CONDITION: CONSTANT STRAIN STATES

Bergan and Nygard [6] state two constraints for FF elements, which taken together
represent the satisfaction of the IET. The first one is

Kv,. = Loy, (13)

which is essentially an equilibrium statement at the element level. Premultiplying (13) by

T we get VI Kv,. = vI Loy, which on introducing (9) and (11) becomes

vT‘C

T e
q..GLB EBGq,.V + q.GLK;Gcq,, = q1.G] Loy. (14)
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If we request that K cannot contribute to the internal energy under a constant strain
state we must have GZ;KhGrC = 0, or, since K; = fv B,EB,; dV,

B,G,. =0, (15)

This may be called the higher order strain cancellation condition. Taking into account
that oo = EB] q,., where B, = D(N{,), the above equation becomes ﬁTEEGrc =
V-1 LEBY,. This can be split into B* = V=1L and BG;,. = BY,. Replacing the former
in the latter we obtain

viLTG,, = BY.. (16)

These conditions were introduced by Bergan and Nygéard [6] in the context of the free
formulation. They state that equation (16) should be used to check that the matrix L is
correct. Then (16) is the first consistency constraint on L. Equations (15) and (16) are
necessary in order that a single element, which is in equilibrium, be capable of copying a
constant strain state. To prove that they are also sufficient conditions is straightforward.

An important consequence of (16) can be investigated as follows. Rewrite it as
v-1LTG,.q,. = Du,.. Multiplying both sides by o and integrating over the element
volume we obtain

olL7G,.q,, = g oIDu,. dV. (17)

Integration by parts of the right hand side yields

olL7G,.q, = o7l /5 N..dSq,., (18)

where N, are the the projections of the modal functions over the normal to the element
side. From the definition of L in (6) we conclude that

/ NI.dSG,.q, = / N..dSq,,. (19)
S S

This result may be stated as follows: the force lumping produced by the boundary displace-
ment fleld should be energy consistent (in the sense of virtual work) with that produced
by the displacement field u,c over the element side. Although BY, is unique for a given
problem, since Gy is generally a rectangular matrix, equation (16) clearly shows that L
is not necessarily unique. Examples that illustrate this property may be found in (17]. L
is unique for simplex elements where we have the same number of nodal connectors v and
rc-modal amplitudes q,., because in this case G, is square and non-singular. For these
elements the total and basic stiffness matrices coalesce. An obvious example is provided
by the constant strain triangle (CST).



Figure 1: A common side : — j shared by two elements

6. SECOND CONDITION: PAIRWISE FORCE CANCELLATION

Quoting from [4]: “The basis for the individual element test is that the element, when
interacting with its neighbors, should be capable of identically reproducing an arbitrary
rigid-body/constant strain field ... The interelement forces transferred at nodes should
cancel out in a pairwise manner for adjacent elements during such state.” This establishes
a second key constraint on L.

Suppose we have a side ¢ — j joining elements k and k + 1, as illustrated in Figure 1.
The second condition requires that

J j
/ N§, dS = / NE+Lgs. (20)

The easiest way of enforcing this condition is by choosing a boundary displacement d that
is uniquely defined over ¢ — j by degrees of freedom on that interface.

This rule can be extended to cases in which more than two elements share a side, as is the case in
many practical structures. Note that (20) does not involve the internal displacement field in any way.
Consequently it establishes the mizability of elements of different types (for example, FF with ANDES
elements). The SET discussed in [24] omits this important condition.

7. MULTIELEMENT PATCH TESTS AND THE IET

Bergan and coworkers called conditions (13) and (20) the IET. We now prove that
if the element under consideration satisfies these conditions, it will also pass the so-called
forms A and B of the multielement patch test [24]. Furthermore, if the element is rank
sufficient it will also pass form C.

Let us consider the assemblage of elements shown in Figure 2 as a patch. The global
displacement fleld consistent with a constant strain field is v{, = GY.q,. The stiffness
matrix of the k** element satisfies equation (13), or its equivalent global form

(PHTK*P*v¢, = (P*)TLF gy, (21)
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i+l o o j+2

j+
e b j+...

Figure 2: An assemblage of elements

where P* are Boolean localization matrices. Upon assembly we obtain
ng.gc = Lgao =p (22)

but because of the satisfaction of equation (20) the force vector p has only components in
nodes j,...j + n. Then, for the :** internal degree of freedom we have

I,;q] gc_] =pi =0, (23)

which is the statement of the form A of the patch test. If an element satisfies A, form B is
also satisfied because from (22) we can obtain the displacement of the internal node 7 as:

Upe; = (K,g,)_l(P: - Kijvgcj)) ] # . (24)

Because the element satisfies (13), v,. can be obtained if upon removmg the rigid
body motions K* is nonsingular and can be inverted. Consequently K* should be rank
sufficient in order to satisfy form C.

8. CONCLUSIONS

It has been shown that the IET constraints plus rank sufficiency provide sufficient

conditions to pass any form of the multielement patch test. The main practical advantages
of the IET are:

1. By applying rules (13) and (20) elements can be constructed that will pass any multi-
element patch test a priori, provided that they are rank sufficient, while being capable

of copying constant strain states. No such possibility exists in the conventional patch
test, which must be necessarily applied a posteriori.

SV

Element mixability is immediately established.
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3. A “surgical operation” can be established to “sanitize” elements that fail the IET, as
discussed in the Appendix of [17]. The operation essentially amounts to the replace-
ment of the basic stiffness.

The price paid for these advantages is that the test is occasionally stronger than
strictly necessary. For example, the BCIZ nonconforming triangle [2] fails the IET but
passes the multielement test for certain mesh configurations.

A potential difficulty in the application of the IET to ezisting elements is the need for
extracting the force-lumping matrix L. This matrix may not be readily available and, as
mentioned in Section 5, is not necessarily unique.

Finally, as remarked in several places, the present statement of the IET is not restricted
to the free formulation, and has actually been used in this expanded form for constructing
high-performance elements based on the ANDES formulation [8, 9,17,18].
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